Quiz 9
Chemical Engineering Thermodynamics
March 11, 2021
Consider a gas that follows the equation of state

$$
P V / R T=1+(b-a / T) P /(R T)
$$

where $b=20 \mathrm{~cm}^{3} /$ mole; $a=40,000 \mathrm{~cm}^{3} \mathrm{~K} /$ mole; and $C_{\mathrm{P}}=41.8+0.084 T(\mathrm{~K}) \mathrm{J} / \mathrm{mol}-\mathrm{K}$.
The gas is under high pressure and is fed through a throttle valve to lower the pressure. The molar density decreases by a factor of $20, \mathbf{2 0} \rho_{2}=\rho_{1}$.
a) Compare the equation of state to the Van der Waals equation of state. Can this fluid form a liquid state? Does it have excluded volume?
b) What happens to this fluid at very low temperatures? Can this fluid become an ideal gas?
c) If the initial fluid is at 5 MPa and 300 K , what is the pressure and temperature of the resulting liquid/vapor mixture after throttling using the inlet stream as the reference state (a real gas with $H=0$)?
d) What is the change in Gibbs free energy for the throttling process?
e) What is the Gibbs free energy, G, of the exiting stream?

$$
\begin{gathered}
\frac{H-H^{i g}}{R T}=-\int_{0}^{P} T\left(\frac{\partial Z}{\partial T}\right)_{P} \frac{d P}{P} \\
\frac{S-S^{i g}}{R}=-\int_{0}^{P}\left[\left((Z-1)+T\left(\frac{\partial Z}{\partial T}\right)_{P}\right)\right] \frac{d P}{P}
\end{gathered}
$$

Include the attached answer sheet with your answers and a sheet with your work and a description of the solver routine used.

Please use this answer sheet

Include a sheet with your work and a description of solver routine in excel.

Forms a Liquid?		Excluded Volume?
b)		
At low $T ?$	Forms Ideal Gas?	
c)	$P_{2}(\mathrm{MPa})=$	
d)	$\Delta \mathrm{G}(\mathrm{J} / \mathrm{mole})=$	$\mathrm{T}_{2}(\mathrm{~K})=$
e)	$\mathrm{G}_{2}(\mathrm{~J} / \mathrm{mole})=$	

ANSWERS: Quiz 9

Chemical Engineering Thermodynamics

 March 11, 2021| | Forms a Liquid? NO | Excluded Volume? YES |
| :--- | :--- | :--- |
| a) | | |
| At low T ? Excluded Volume goes to ∞ | Forms Ideal Gas? Can't form i.g. at $\mathrm{T}=>\infty$
 = ∞; Can form i.g. at $\mathrm{P}=>0$ | |
| c) | $\mathrm{P}_{2}(\mathrm{MPa})=0.300 \mathrm{Mpa}$ | |
| d) | $\Delta \mathrm{G}(\mathrm{J} / \mathrm{mole})=496 \mathrm{~J} / \mathrm{mole}$ | $\mathrm{T}_{2}(\mathrm{~K})=283 \mathrm{~K}$ |
| e) | $\mathrm{G}_{2}(\mathrm{~J} / \mathrm{mole})=496 \mathrm{~J} / \mathrm{mole}$ | |

a),b) Sondes W_{a} 's

$$
\frac{P V}{R T}=1+(b-a / T) \frac{P}{R T}
$$

$$
p=\frac{R T}{v}+\left(b-\frac{a}{T}\right) \frac{p}{v}=\frac{R T}{R E}
$$

$$
P\left(1-\left(b-\frac{a}{T}\right) \frac{1}{V}\right)=\frac{R \Gamma}{V}
$$

$$
P=\frac{R T}{V-\left(\zeta+\frac{q}{T}\right)}
$$

Hernaldelinn olare

NoLinyid is
Con'terman expluded u
Canferm i.s. at $V \rightarrow$ od or at $B \rightarrow 0$
Aos Krulad Volunp

$$
\begin{aligned}
& \text { Triade? } \\
& \text { volum } \\
& \text { mism } \frac{a}{V^{2}} 4 \mathrm{~cm} \\
& \text { NoLur D Sole }
\end{aligned}
$$

$$
\begin{aligned}
& Z=1+(b-a T) \frac{p}{R T} \\
& \left(\frac{\partial t}{\partial T}\right)_{p}=\frac{-b p}{R T^{2}}+\frac{2 a p}{R T^{3}}=\frac{P}{R T^{2}}\left(\frac{2 a}{T}-b\right) \\
& \text { Thuttle Volu } \Delta H=O \\
& \text { Nop smpa sax } V=\frac{n r}{p}+\left(b-\frac{a}{\Gamma}\right) \\
& \left.\left.\left.\Delta H=O=\left(H-H^{\prime}\right)_{2}\right)-\left(H-H^{\prime}\right)_{1}\right)+\left(H^{\prime}\right)-H^{\prime \prime}\right) \\
& \frac{\left(H-\mu^{\prime}\right)}{A T}=-\int_{0}^{p} T\left(\frac{\partial z}{\alpha T}\right)_{p} d \rho \\
& =-\int_{0}^{1} \frac{1}{R+}\left(\frac{2 a}{T}-b\right) d P \\
& \left(\frac{1+-1+1}{1+}\right)=\frac{p}{R+}\left(b-\frac{2 a}{T}\right) \\
& (H-H \cdot P)=P\left(b-\frac{2 a}{T}\right) \\
& \Delta t=O=P_{2}\left(b-\frac{2 q}{T_{2}}\right)-P_{1}\left(b-\frac{2 q}{T_{1}}\right)+\int_{T_{t}}^{T_{2}} C_{p} d T \\
& \text { (1) } O=P_{2}\left(b-\frac{2 a}{T_{2}}\right)-P_{1}\left(h-\frac{2 a}{T_{1}}\right)+4 i_{0}^{c}\left(T_{2}-T_{1}\right)+\frac{0 \cdot g^{4} 4}{2}\left(T_{2}^{2}-T_{1}\right.
\end{aligned}
$$

(2) $O=\frac{P_{2} l_{2}}{R T_{2}}-1-\left(b-\frac{a}{T_{2}}\right) \frac{p_{2}}{R T_{2}}$
(3) $\quad U_{2}=20 U_{1}=20\left(\frac{R T}{p_{1}}\left(1+\left(b-\frac{q}{T_{1}}\right) \frac{p_{1}}{R_{1}}\right)\right.$

3 eguating \& 3unhaur P_{2}, V_{2}, T_{2}
Usp Exalelihert/sclum

$$
T_{2}=253 \mathrm{~K} \quad P_{2}=0,300 \mathrm{mPa} \quad U_{2}=7,700 \mathrm{~m}^{3} \mathrm{mb}^{3}
$$

d) (-5 40
(1) 1
$-p(6)$

$$
\begin{aligned}
& G=H^{\prime}-S T \\
& \left(G-G^{\prime}\right)=\left(H-H^{\prime}\right)-\frac{\left(-S^{\prime \prime}\right) T}{\text { Ned }}
\end{aligned}
$$

$$
\frac{\left(S-S^{i i}\right)}{n}=-\int_{0}^{p}\left[(z-1)+T\left(\frac{\partial P}{\partial T}\right)_{p}\right] d p
$$

$$
\left.=-\int_{c}^{p}\left(\frac{p}{d T}\left(b-\frac{d}{T}\right)\right)+\frac{p}{n T}\left(\frac{2 a}{T}-b\right)\right] \frac{d p}{p}
$$

$$
(S-J i \eta)=\left(-\frac{a_{c} \rho}{R T}\right)^{R}
$$

$$
=\int_{c}^{P}-\frac{q}{R T^{2}} d P=\frac{-q P}{R T^{2}}
$$

$$
\begin{aligned}
& \left(G-G^{\prime 9}\right)=P\left(\left(G-\frac{24}{T}\right)+\frac{q}{T}\right) \\
& \left(G-b^{\prime}\right)=p\left(b-\frac{a}{T}\right) \\
& \Delta G=\left(G-G_{2}^{\prime \prime}\right)-\left(G G^{\prime \prime}\right)+\left(G_{2}^{\prime \prime}-G_{1}^{\prime \prime}\right) \\
& =(G \cdot C \cdot)_{C}-\left(G-C^{i}\right)_{1}+\int_{T_{1}}^{T_{1}} C_{p} d T-T_{2} \int_{T_{1}}^{T_{2}} T_{T} d T \\
& \text { Usp Exrel te Gááob }
\end{aligned}
$$

$$
\Delta 6=496 \text { Thil } 6
$$

$G_{1}=O$ fing $H_{1}=O$ and $\left.S_{1}=O\right)_{v}$ Repren Sirte

